Общие принципы составления уравнений динамики. Общее уравнение динамики. Пример решения задачи. Принцип возможных перемещений

Общее уравнение динамики имеет вид:

где -активные силы, приложенные к системе;

-масса k -ой точки;

-ускорение k -ой точки;

Виртуальное перемещение k -ой точки.

Уравнение (3.10) показывает, что в любой фиксированный момент времени сумма элементарных работ активных сил и сил инерции на любых виртуальных перемещениях равна нулю при условии, что на систему наложены идеальные и удерживающие связи.

Важным свойством общего уравнения динамики является то, что оно не содержит реакций идеальных связей. Иногда это уравнение можно использовать для исследования движения механических систем и в тех случаях, когда не все связи являются идеальными, например, когда имеются связи с трением. Для этого следует к активным силам добавить те составляющие реакций, которые обусловлены наличием сил трения.

Вычисление суммы работ сил инерции на виртуальных перемещениях твердого тела проводится по следующим формулам.

1. При поступательном движении тела:

где
-главный вектор сил инерции тела (M - масса тела, - ускорение центра масс),

- виртуальное перемещение центра масс тела.

2. При вращении тела вокруг неподвижной оси:

где
-главный момент сил инерции тела относительно оси вращения (- момент инерции тела относительно оси вращения, - угловое ускорение тела),

- виртуальное угловое перемещение тела.

3. При плоско - параллельном движении:

где
- главный момент сил инерции тела относительно оси, проходящей через центр массС тела.

Частным случаем общего уравнения динамики является принцип виртуальных перемещений (общее уравнение статики). Действительно, в том случае, когда механическая система находится в покое, все силы инерции равны нулю, и из общего уравнения динамики вытекает принцип виртуальных перемещений: для того чтобы механическая система, на которую наложены идеальные связи находилась в равновесии, необходимо и достаточно, чтобы сумма элементарных работ всех активных сил, приложенных к рассматриваемой системе, на любом из ее виртуальных перемещений была равна нулю

(3.11)

Рассмотрим процедуру использования уравнения (3.10) для составления дифференциальных уравнений движения систем с двумя степенями свободы:

1. Изобразить механическую систему в произвольный момент времени.

2. Показать на рисунке активные силы и моменты, а также силы и моменты, соответствующие неидеальным связям (например, силы трения).

3. Определить главные векторы и главные моменты сил инерции.

4. Выбрать обобщенные координаты в числе, равном числу степеней свободы системы.

5. Дать виртуальное перемещение, соответствующее одной из степеней свободы системы, считая при этом виртуальные перемещения, соответствующие остальным степеням свободы, равными нулю.

6. Вычислить сумму элементарных работ всех сил и моментов (см. п. 2 и 3) на соответствующих виртуальных перемещениях и приравнять эту сумму нулю.

7. Повторить п. 4 - 6 для каждого независимого движения системы.

При применении общего уравнения динамики к системам с двумя и большим числом степеней свободы, в связи с громоздкостью выкладок, можно использовать следующие рекомендации:

1. Сделать предположение о направлении ускорений точек системы.

2. Направить на рисунке силы инерции в стороны, противоположные выбранным направлениям соответствующих ускорений.

3. Определить знаки элементарных работ сил инерции в соответствии с их направлениями на рисунке и избранными направлениями виртуальных перемещений точек системы.

4. Если искомые ускорения оказываются положительными, то сделанные предположения о направлениях ускорений подтверждаются, если отрицательными, то соответствующие ускорения направлены в другую сторону.

Общее уравнение динамики для системы с любыми связями (объединенный принцип Даламбера-Лагранжа или общее уравнение механики) :

где – активная сила, приложенная к -ой точке системы; – сила реакции связей; – сила инерции точки; – возможное перемещение.

Оно в случае равновесия системы при обращении в нуль всех сил инерции точек системы переходит в принцип возможных перемещений. Обычно его применяют для систем с идеальными связями, для которых выполняется условие

В этом случае (229) принимает одну из форм:

,

,

. (230)

Таким образом, согласно общему уравнению динамики, в любой момент движения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями .

Общему уравнению динамики можно придать другие, эквивалентные формы. Раскрывая скалярное произведение векторов, его можно выразить в виде

где – координаты -ой точки системы. Учитывая, что проекции сил инерции на оси координат через проекции ускорений на эти оси выражаются соотношениями

,

общему уравнению динамики можно придать форму

В этом виде его называют общим уравнением динамики в аналитической форме .

При использовании общего уравнения динамики необходимо уметь вычислять элементарную работу сил инерции системы на возможных перемещениях. Для этого применяются соответствующие формулы для элементарной работы, полученные для обычных сил. Рассмотрим их применение для сил инерции твердого тела в частных случаях его движения.

При поступательном движении. В этом случае тело имеет три степени свободы и вследствие наложенных связей может совершать только поступательное движение. Возможные перемещения тела, которые допускают связи, тоже являются поступательными.

Силы инерции при поступательном движении приводятся к равнодействующей . Для суммы элементарных работ сил инерции на поступательном возможном перемещении тела получим

где – возможное перемещение центра масс и любой точки тела, так как поступательное возможное перемещение у всех точек тела одинаково: одинаковы и ускорения, т. е. .

При вращении твердого тела вокруг неподвижной оси. Тело в этом случае имеет одну степень свободы. Оно может вращаться вокруг неподвижной оси . Возможное перемещение, которое допускается наложенными связями, является тоже поворотом тела на элементарный угол вокруг неподвижной оси.

Силы инерции, приведенные к точке на оси вращения, сводятся к главному вектору и главному моменту . Главный вектор сил инерции приложен к неподвижной точке, и его элементарная работа на возможном перемещении равна нулю. У главного момента сил инерции не равную нулю элементарную работу совершит только его проекция на ось вращения . Таким образом, для суммы работ сил инерции на рассматриваемом возможном перемещении имеем

,

если угол сообщить в направлении дуговой стрелки углового ускорения .

При плоском движении. Связи, наложенные на твердое тело, допускают в этом случае только плоское возможное перемещение. В общем случае оно состоит из поступательного возможного перемещения вместе с полюсом, за который выберем центр масс, и поворота на элементарный угол вокруг оси , проходящей через центр масс и перпендикулярной плоскости, параллельно которой может совершать тело плоское движение.


Динамика:
Аналитическая механика
§ 47. Общее уравнение динамики

Задачи с решениями

47.1 Три груза массы M каждый соединены нерастяжимой нитью, переброшенной через неподвижный блок A. Два груза лежат на гладкой горизонтальной плоскости, а третий груз подвешен вертикально. Определить ускорение системы и натяжение нити в сечении ab. Массой нити и блока пренебречь.
РЕШЕНИЕ

47.2 Решить предыдущую задачу с учетом массы блока, считая, что при движении грузов блок A вращается вокруг неподвижной оси. Масса блока сплошного однородного диска равна 2M.
РЕШЕНИЕ

47.3 Два груза массы M1 и M2 подвешены на двух гибких нерастяжимых нитях, которые навернуты, как указано на рисунке, на барабаны, имеющие радиусы r1 и r2 и насаженные на общую ось; грузы движутся под влиянием силы тяжести. Определить угловое ускорение ε барабанов, пренебрегая их массами и массой нитей.
РЕШЕНИЕ

47.4 При условии предыдущей задачи определить угловое ускорение ε и натяжения T1 и T2 нитей, принимая во внимание массы барабанов, при следующих данных: M1=20 кг, M2=34 кг, r1=5 см, r2=10 см; массы барабанов: малого 4 кг и большого 8 кг. Массы барабанов считать равномерно распределенными по их внешним поверхностям.
РЕШЕНИЕ

47.5 К системе блоков, изображенной на рисунке, подвешены грузы: M1 массы 10 кг и M2 массы 8 кг. Определить ускорение w2 груза M2 и натяжение нити, пренебрегая массами блоков.
РЕШЕНИЕ

47.6 К нижнему шкиву C подъемника приложен вращающий момент M. Определить ускорение груза A массы M1, поднимаемого вверх, если масса противовеса B равна M2, а шкивы C и D радиуса r и массы M3 каждый представляют собой однородные цилиндры. Массой ремня пренебречь.
РЕШЕНИЕ

47.7 Вал кабестана механизма для передвижения грузов радиуса r приводится в движение постоянным вращающим моментом M, приложенным к рукоятке AB. Определить ускорение груза C массы m, если коэффициент трения скольжения груза о горизонтальную плоскость равен f. Массой каната и кабестана пренебречь.
РЕШЕНИЕ

47.8 Решить предыдущую задачу с учетом массы кабестана, момент инерции которого относительно оси вращения равен J.
РЕШЕНИЕ

47.9 Груз A массы M1, опускаясь по наклонной гладкой плоскости, расположенной под углом α к горизонту, приводит во вращение посредством нерастяжимой нити барабан B массы M2 и радиуса r. Определить угловое ускорение барабана, если считать барабан однородным круглым цилиндром. Массой неподвижного блока C и нити пренебречь.
РЕШЕНИЕ

47.10 Человек толкает тележку, приложив к ней горизонтальную силу F. Определить ускорение кузова тележки, если масса кузова равна M1, M2 масса каждого из четырех колес, r радиус колес, fк коэффициент трения качения. Колеса считать сплошными круглыми дисками, катящимися по рельсам без скольжения.
РЕШЕНИЕ

47.11 Каток A массы M1, скатываясь без скольжения по наклонной плоскости вниз, поднимает посредством нерастяжимой нити, переброшенной через блок B, груз C массы M2. При этом блок B вращается вокруг неподвижной оси O, перпендикулярной его плоскости. Каток A и блок B однородные круглые диски одинаковой массы и радиуса. Наклонная плоскость образует угол α с горизонтом. Определить ускорение оси катка. Массой нити пренебречь.
РЕШЕНИЕ

47.12 Груз B массы M1 приводит в движение цилиндрический каток A массы M2 и радиуса r при помощи нити, намотанной на каток. Определить ускорение груза B, если каток катится без скольжения, а коэффициент трения качения равен fк. Массой блока D пренебречь.
РЕШЕНИЕ

47.13 Стержень DE массы M1 лежит на трех катках A, B и C массы M2 каждый. К стержню приложена по горизонтали вправо сила F, приводящая в движение стержень и катки. Скольжение между стержнем и катками, а также между катками и горизонтальной плоскостью отсутствует. Найти ускорение стержня DE. Катки считать однородными круглыми цилиндрами.
РЕШЕНИЕ

47.14 Определить ускорение груза M2, рассмотренного в задаче 47.5, с учетом массы блоков сплошных однородных дисков массы 4 кг каждый.
РЕШЕНИЕ

47.15 Груз А массы M1, опускаясь вниз, посредством нерастяжимой нити, переброшенной через неподвижный блок D и намотанной на шкив B, заставляет вал C катиться без скольжения по горизонтальному рельсу. Шкив B радиуса R жестко насажен на вал C радиуса r; их общая масса равна M2, а радиус инерции относительно оси O, перпендикулярной плоскости рисунка, равен ρ. Найти ускорение груза A. Массой нити и блока пренебречь.
РЕШЕНИЕ

47.16 Центробежный регулятор вращается вокруг вертикальной оси с постоянной угловой скоростью ω. Определить угол отклонения ручек OA и OB от вертикали, принимая во внимание только массу M каждого из шаров и массу M1 муфты C, все стержни имеют одинаковую длину l.
РЕШЕНИЕ

47.17 Центробежный регулятор вращается с постоянной угловой скоростью ω. Найти зависимость между угловой скоростью регулятора и углом α отклонения его стержней от вертикали, если муфта массы M1 отжимается вниз пружиной, находящейся при α=0 в недеформированном состоянии и закрепленной верхним концом на оси регулятора; массы шаров равны M2, длина стержней равна l, оси подвеса стержней отстоят от оси регулятора на расстоянии a; массами стержней и пружины пренебречь. Коэффициент жесткости пружины равен c.
РЕШЕНИЕ

47.18 Центробежный пружинный регулятор состоит из двух грузов A и B массы M каждый, насаженных на скрепленный со шпинделем регулятора гладкий горизонтальный стержень муфты C массы M1, тяг длины l и пружин, отжимающих грузы к оси вращения; расстояние шарниров тяг от оси шпинделя равно e; c коэффициент жесткости пружин. Определить угловую скорость регулятора при угле раствора α, если при угле α0, где α0РЕШЕНИЕ

47.19 В регуляторе четыре груза одинаковой массы M1 находятся на концах двух равноплечих рычагов длины 2l, которые могут вращаться в плоскости регулятора вокруг конца шпинделя O и образуют с осью шпинделя переменный угол φ. В точке A, находящейся от конца шпинделя O на расстоянии OA=a, со шпинделем шарнирно соединены рычаги AB и AC длины a, которые в точках B и C в свою очередь сочленены со стержнями BD и CD длины a, несущими муфту D. В точках B и C имеются ползунки, скользящие вдоль рычагов, несущих грузы. Масса муфты равна M2. Регулятор вращается с постоянной угловой скоростью ω. Найти связь между углом и угловой скоростью ω в равновесном положении регулятора.

Пример решения задачи с применением общего уравнения динамики (принцип Даламбера – Лагранжа) для системы с твердыми телами, грузами, шкивами и блоком, соединенных нитями.

Содержание

Условие задачи

Механическая система состоит из однородных ступенчатых шкивов 1 и 2, обмотанных нитями, грузов 3-6, прикрепленных к этим нитям, и невесомого блока. Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом M = 10 Н·м , приложенной к шкиву 1. Радиусы ступеней шкива 1 равны: R 1 = 0,2 м , r 1 = 0,1 м , а шкива 2 - R 2 = 0,3 м , r 2 = 0,15 м ; их радиусы инерции относительно осей вращения равны соответственно ρ 1 = 0,1 м и ρ 2 = 0,2 м .

Пренебрегая трением, определить ускорение груза 5. Веса шкивов и грузов заданы: P 1 = 40 Н , P 2 = 0 , P 3 = 0 , P 4 = 20 Н , P 5 = 30 Н , P 6 = 10 Н . Грузы, веса которых равны нулю, на чертеже не изображать.

Указание . При решении задачи использовать общее уравнение динамики (принцип Даламбера - Лагранжа) .

Решение задачи

Дано: R 1 = 0,2 м , r 1 = 0,1 м , R 2 = 0,3 м , r 2 = 0,15 м , ρ 1 = 0,1 м , ρ 2 = 0,2 м . P 1 = 40 Н , P 2 = 0 , P 3 = 0 , P 4 = 20 Н , P 5 = 30 Н , P 6 = 10 Н , M = 10 Н·м .

Найти: a 5 .

Установление кинематических соотношений

Установим кинематические соотношения. Пусть V 4 , V 5 , V 6 , a 4 , a 5 , a 6 , δS 4 , δS 5 , δS 6 - скорости, ускорения и малые перемещения грузов 4,5 и 6. Пусть ω 1 , ω 2 , ε 1 , ε 2 , δφ 1 , δφ 2 - угловые скорости, угловые ускорения и малые углы поворота шкивов 1 и 2.

Скорость движения нити между телами 2, 4 и 5:
. Отсюда .
Скорость движения нити между шкивами 1 и 2:
. Отсюда
.
Скорость движения нити между телами 1 и 6:
.

Итак, мы нашли связь между скоростями тел.
;
;
.

Поскольку ускорения - это производные скоростей по времени, ,
то дифференцируя по времени предыдущие формулы, находим связь между ускорениями:
;
;
.

Поскольку скорости - это производные от перемещений по времени, то такая же связь есть между бесконечно малыми перемещениями.
;
;
.

Активные внешние силы

Рассмотрим внешние силы, действующие на систему.
Это силы тяжести тел P 1 = 40 Н , P 4 = 20 Н , P 5 = 30 Н и P 6 = 10 Н , направленные вниз;
заданная пара сил с моментом M = 10 Н·м ;
силы давления осей N 1 , N 2 и N шкивов 1, 2 и невесомого блока;
силы реакции N 4 и N 6 , действующие на грузы со стороны поверхностей, перпендикулярные этим поверхностям.

Силы инерции

Мы будем решать эту задачу с помощью общего уравнения динамики, применяя принцип Даламбера - Лагранжа. Он заключается в том, что сначала мы вводим силы инерции. После введения сил инерции, задача динамики превращается в задачу статики. То есть нам нужно найти неизвестные силы инерции, чтобы система находилась в равновесии. Данную задачу статики мы решаем, применяя принцип Даламбера. То есть считаем, что система совершила малое перемещение. Тогда в равновесии, сумма работ всех сил, при таком перемещении, равна нулю.

Итак, на первом этапе мы вводим силы инерции . Для этого предполагаем, что система движется с некоторым, пока не определенным, ускорением. То есть шкивы 1 и 2 вращаются с угловыми ускорениями ε 1 и ε 2 , соответственно; грузы 4,5 и 6 совершают поступательное движение с ускорениями a 4 , a 5 и a 6 , соответственно. Между этими ускорениями имеются связи, которые мы нашли ранее. То есть все эти ускорения можно выразить через одно ускорение a 5 . Силы инерции определяются так, что они равны по модулю и противоположны по направлению тем силам (и моментам сил), которые, по законам динамики, создавали бы предполагаемые ускорения (при отсутствии других сил).

Определяем модули (абсолютные значения) сил и моментов инерции и выражаем их через a 5 .
Пусть - массы тел;
- момент инерции шкива 1.
Момент сил инерции, действующий на шкив 1:
.
Силы инерции, действующие на грузы 4, 5 и 6:
;
;
.

Изображаем силы инерции на чертеже учитывая, что их направления противоположны ускорениям.

Применение общего уравнения динамики

Даем системе бесконечно малое перемещение. Пусть груз 5 переместился на малое расстояние δS 5 . Тогда угол поворота δφ 1 шкива 1 и перемещения δS 4 и δS 6 грузов 4 и 6 определяются с помощью установленных ранее кинематических соотношений. Поскольку нити нерастяжимые, то они не совершают работу при таком перемещении. Это означает, что система имеет идеальные связи. Поэтому мы можем применить общее уравнение динамики:
,
согласно которому сумма работ всех активных сил и сил инерции, при таком перемещении, равна нулю.

Определение суммы работ внешних активных сил и сил инерции

Работа, которую совершает сила при перемещении точки ее приложения на малое смещение равна скалярному произведению векторов , то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, произведенная моментом сил , вычисляется аналогично:
.

Определяем работы всех активных сил и сил инерции. Поскольку центры осей шкивов 1, 2 и невесомого блока не совершают перемещений, то силы P 1 , N 1 , N 2 и N не совершают работу. Поскольку силы N 4 и N 6 перпендикулярны перемещениям грузов 4 и 6, то эти силы также не совершают работу.

Находим сумму работ остальных активных сил и сил инерции.

.
Подставляем выражения для сил инерции и применяем кинематические соотношения.

.
Сокращаем на δS 5 и преобразовываем.

.
Подставляем численные значения.

;
;

Принцип возможных перемещений, дающий общий метод решения задач статики, можно применить к решению задач динамики. Как известно, согласно принципу Д’Аламбера, совокупность всех сил, действующих на механическую систему, и сил инерции образует в каждый момент времени уравновешенную систему сил. Тогда, применив к этим силам принцип возможных перемещений, для механической системы получим уравнение

Это уравнение выражает следующий принцип Д’Аламбера - Лагранжа: при движении механической системы в каждый момент времени сумма элементарных работ всех действующих на систему сил и всех сил инерции на любом возможном перемещении системы равна нулю. Уравнение (24.1) называют общим уравнением динамики.

В первое слагаемое уравнения (24.1) входит работа активных сил и работа реакций связей. Если на систему наложены идеальные связи, то для их реакций

и общее уравнение динамики для системы с идеальными связями принимает вид

Так как в уравнения (24.1), (24.2) входит работа сил инерции, величина которых выражается через ускорения точек, то эти уравнения дают возможность составлять дифференциальные уравнения движения механической системы. Если система представляет собой совокупность каких-нибудь твердых тел, то множество сил инерции всех точек каждого тела целесообразно заменить их силовыми эквивалентами: приложенной в каком-либо центре силой, равной главному вектору сил инерции тела, и парой сил инерции с моментом, равным главному моменту сил инерции относительно этого центра.

Для системы, имеющей s степеней свободы, уравнение работ

(24.2) может быть записано через обобщенные силы и обобщенные координаты в виде

где Qj - обобщенная активная сила; Q 1 * - обобщенная сила инерции, соответствующая обобщенной координате q f .

Так как возможные перемещения 8q , между собой независимы и каждое из них в общем случае не равно нулю, то условие (24.3) будет выполняться, если

где s - число обобщенных координат или число степеней свободы системы.

Уравнения (24.4) выражают общее уравнение динамики в обобщенных силах.

Задача 24.1. Механическая система (рис. 24.1) состоит из двухступенчатого шкива I (вес Р ] - 20 Н, радиусы ступеней R- 0,4 м, г - 0,2 м, радиус инерции относительно оси вращения р = 0,3 м), обмотанного нитями, на концах которых прикреплены груз А (весом Р 2 = 10 Н) и каток (сплошной однородный цилиндр весом Р 3 = 80 Н). Каток катится без скольжения по шероховатой наклонной поверхности с углом наклона а = 30°. Система движется в вертикальной плоскости под действием сил тяжести и вращающего момента М - 6 Н м, приложенного к шкиву I. Определить угловое ускорение шкива, считая тела абсолютно твердыми, а нити нерастяжимыми.

Решение. 1. Рассмотрим движение механической системы, состоящей из тел 1, 2, 3, соединенных нитями. Связи, наложенные на систему, - идеальные. Система имеет одну степень свободы. Выберем в качестве обобщенной координаты угол ср, - угол поворота шкива 1.

Для определения углового ускорения е шкива применим общее уравнение динамики (24.2)

где 28/4 ^ - сумма элементарных работ активных сил; 28/4” - сумма элементарных работ сил инерции.

2. Изображаем на чертеже активные силы Р х, Р 2 , Р 3 и вращающий момент М. Реакции идеальных связей (в точках О и Л) на чертеже не показываем.


Задаемся направлением углового ускорения s шкива против хода часовой стрелки. В соответствии с этим изображаем на чертеже ускорение а 2 груза и ускорение а в центра масс В цилиндрического катка. Теперь к активным силам, действующим на систему, присоединим силы инерции, направляя их противоположно соответствующему ускорению. Числовые значения этих величин определяются по формулам

В эти формулы подставлены значения моментов инерции J 0 шкива и J в сплошного однородного цилиндра 3.

3. Сообщим системе возможное перемещение 5фj >0; при этом груз Л получит перемещение 5s 2 , точка В катка - перемещение 5s B , а каток 3 повернется на угол 5ф 3 , направленный против хода часовой стрелки.

Составив уравнение (а), получим

Для решения этого уравнения и определения углового ускорения е необходимо выполнить две подготовительные операции: выразить все перемещения через приращение обобщенной координаты и величины всех ускорений выразить через искомое ускорение.

Все перемещения, участвующие в уравнении (в), выражаем через 5cpj:

При составлении последнего равенства учтено, что точка К цилиндра 3 является мгновенным центром скоростей.

Величины ускорений а 2 , а в, s 3 , участвующие в формулах (б), выразим через искомое угловое ускорение s:

Подставив величины (б) при учете равенств (д) и соотношений (г) в уравнение (в) после упрощений приведем его к виду

Так как бф, 0, то приравниваем к нулю выражение, стоящее в фигурных скобках. Из полученного в результате этого уравнения найдем искомую величину


Вычисления дают следующий ответ: s = 2,4 с; знак указывает, что угловое ускорение шкива направлено так, как предполагалось в начале расчета, т. е. как показано на рис. 24.1.

Например, если бы в этой же задаче вращающий момент был равен М = 2 Н м, то в результате вычислений по формуле (ж) получили бы е = -2,4 с -1 ; это означало бы, что в рассматриваемом случае угловое ускорение шкива было бы направлено противоположно изображенному на рис. 24.1.

В решениях задач динамики как частный случай содержится решение соответствующей задачи статики. Если бы для рассматриваемой механической системы (см. рис. 24.1) определялось условие равновесия по принципу возможных перемещений, то получили бы расчетное уравнение

Как видим, в левой части равенства стоит выражение числителя формулы (ж), т. е. определено условие, при котором 8 = 0 (что соответствует покою системы либо движению с равномерным вращением шкива). Смысл этого равенства заключается в том, что обобщенная активная сила системы на возможном перемещении 8ф, равна нулю, т. е. Q“ = 0.

Понравилась статья? Поделитесь с друзьями!