NASA запустило телескоп для поиска других планет. NASA изучает проекты нового большого космического телескопа Сияющая конструкция слишком правильной структуры

Косми́ческий телеско́п «Хаббл» (англ. Hubble Space Telescope, HST, КТХ, код обсерватории «250») - автоматическая обсерватория на орбите вокруг , названная в честь Эдвина Хаббла. Телескоп «Хаббл» - совместный проект и Европейского космического агентства; он входит в число Больших обсерваторий НАСА.

Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь - в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы, разрешающая способность телескопа в 7-10 раз больше, чем у аналогичного телескопа, расположенного на Земле.

  • НАСА при помощи космического телескопа Hubble получило видео столкновения материи внутри джетов (релятивистских струй, в которых частицы разгоняются до околосветовых скоростей, примерно в […]
  • Пятая экспедиция россиянина Геннадия Падалки началась 27 марта. Если посадка спускаемой капсулы корабля "Союз ТМА-16М" пройдёт, как намечено, 11 сентября, то суммарный налет космонавта […]
  • Это изображение, сделанное при помощи телескопа «Хаббл», который принадлежит ведомству НАСА и Европейскому космическому агентству, демонстрирует переливающийся пейзаж одной из самых […]
  • НАСА представит результаты новых находок, связанных с чёрными дырами, на пресс-конференции, которая состоится сегодня, 27 февраля.На пресс-конференции, которая начнётся сегодня в 18:00 […]
  • Аппарат оснащен самой мощной камерой HiRISE из присутствующих на околомарсианской орбите, съемка Марса ведется с 2006 года. Когда ученые сравнили фотографии одних и тех же регионов, но […]
  • Космический зонд был запущен на орбиту 7 сентября в 07:27 мск при помощи ракеты-носителя "Минотавр-5" компанией НАСА. LADEE находился на орбите земли, где "ждал" подходящего расположения […]
  • В ближайшем будущем американские авиакомпании смогут сэкономить более $250 млрд благодаря полученным в течение последних 6 лет разработкам NASA в области «зеленых» технологий. Об этом […]
  • Ученые НАСА получили снимок вероятного сценария развития Солнечной системы. Телескоп Hubble сфотографировал звезду Кэмпбелла, находящуюся на завершающей стадии эволюции небесного тела. […]
  • Тяжелый политический кризис в Штатах, возникший вследствие отсутствия в парламенте согласия, ставит под угрозу космические проекты страны. Из-за бюджетного "шатдауна" Нацуправление по […]

Космические телескопы - это, как правило, телескопы, работающие за пределами атмосферы Земли и, тем самым, не утруждающие себя просвечиванием через эту атмосферу. Самым известным космическим телескопом на сегодняшний день является космический телескоп Хаббл, открывший сотни экзопланет, показавший множество живописных галактик, космических событий и расширивший горизонты нашего взгляда в космос. На смену Хабблу придет космический телескоп Джеймса Вебба, который будет запущен в космос в 2018 году и зеркало которого будет превышать диаметр зеркала Хаббла почти в три раза. После Джеймса Вебба ученые планируют отправить в космос Космический телескоп высокого разрешения (HDST), но это пока только в планах. Как бы то ни было, на долю космических телескопов приходится и будет приходиться большая часть наших открытий в глубоком космосе.

Если у нас когда-нибудь будут гигантские надувные телескопы в космосе, можете сказать спасибо маме Криса Уокера. Несколько лет назад Уокер делал шоколадный пудинг, как вдруг ему пришлось прервать свое кулинарное дело и позвонить маме. Он снял пудинг с плиты, накрыл его полиэтиленовой пленкой и поставил горшок на пол возле кушетки. После разговора он с удивлением обнаружил изображение лампочки от лампы неподалеку, парящее над концом кушетки. Исследовав причину этого явления, он обнаружил, что карман холодного воздуха, который образовался при охлаждении пудинга, привел к провисанию пластиковой упаковки к пудингу. Фактически это сформировало линзу, которая отражала лампочку.

В последнее время человечество занято поиском экзопланет и на протяжении нескольких лет Европейское Космическое Агентство () вело разработку космического телескопа Cheops, предназначенного для поиска планет, похожих на нашу. Cheops также называют «охотником за экзопланетами» и возлагают на него большие надежды. А недавно стала известна дата запуска космического телескопа, а также некоторые другие подробности.

Ракета Delta II с орбитальным телескопом Kepler на стартовом столе. Фото с сайта NASA

В субботу, в 06:49 по московскому времени с космодрома на мысе Канаверал в штате Флорида был запущен орбитальный телескоп Kepler, предназначенный для поисков экзопланет. На орбиту аппарат вывела ракета-носитель Delta II. Сообщение о старте аппарата приведено на сайте NASA.

Миссия Kepler продлится три с половиной года. Все это время он будет наблюдать около 100 тысяч похожих на Солнце звезд, вокруг которых могут обращаться экзопланеты. Аппарат будет искать планеты, находящиеся вне Солнечной системы, при помощи транзитного метода. Когда планета проходит по диску своей звезды, она закрывает от наблюдателя часть ее излучения. Анализируя колебания яркости светил, астрономы могут не только находить планеты, но также приблизительно оценивать их размер.

Kepler будет обращаться вокруг Солнца по орбите высотой в одну астрономическую единицу (а.е.). А.е. равна 150 миллионам километров и равна расстоянию от Земли до Солнца. Фактически, Kepler будет повторять путь нашей планеты, обращающейся вокруг Солнца. Такое положение позволяет телескопу постоянно следить за одними и теми же звездами. Телескоп "Хаббл", например, лишен этого преимущества.

В настоящее время астрономы обнаружили более 300 экзопланет. Большинство из них являются газовыми гигантами наподобие Юпитера. На таких планетах не могут развиваться организмы земного типа, а именно обитаемость экопланет, в конечном счете, интересует ученых. Kepler сможет находить планеты меньшего размера, более пригодные для жизни.


Телескоп Kepler за работой. Изображение с сайта nasa.gov

Другие Земли

NASA запустило телескоп для поиска планет земного типа

Ранним утром седьмого марта 2009 года с космодрома на мысе Канаверал в штате Флорида был запущен орбитальный телескоп Kepler. Задолго до этой даты сообщения о будущем старте появлялись во множестве СМИ. Пристальное внимание прессы к телескопу вполне объяснимо: он будет искать в далеком космосе планеты, похожие на Землю.

Все сразу

Для обнаружения экзопланет (планет, находящихся вне Солнечной системы), Kepler будет использовать так называемый транзитный метод. Когда планета проходит по диску своей звезды, она закрывает часть ее излучения. Новый телескоп как раз и будет отыскивать такие "подмигивающие" светила. Анализируя параметры "подмигивания", астрономы смогут узнать некоторые характеристики найденных экзопланет.

По частоте колебаний яркости можно определить период обращения планеты и высоту ее орбиты. Эти сведения, а также данные о температуре звезды позволят ученым вычислить, насколько горяча экзопланета. Кроме того, зная длину орбиты, астрономы по третьему закону Кеплера, в честь которого был назван телескоп, могут узнать массу планеты. Количество звездного излучения, которое она закрывает, даст исследователям информацию о ее размерах.

Ученых интересуют прежде всего небольшие планеты, обращающиеся в зоне обитаемости своих звезд. Зона обитаемости – это узкий отрезок пространства вокруг звезды, попав в который планета может быть теоретически пригодной для выживания организмов земного типа. В случае звезд, похожих на Солнце (а именно их в первую очередь будут рассматривать ученые), зона обитаемости будет находиться на расстоянии около одной астрономической единицы от светила. То есть, дистанция от экзопланеты до звезды будет приблизительно соответствовать дистанции от Земли до Солнца.

Сплошные проблемы

Создается впечатление, что транзитный метод идеально приспособлен для поиска новых миров, и непонятно, почему с его помощью было найдено всего около 15 процентов экзопланет (к настоящему моменту астрономам известно около 350 планет, обращающихся вокруг далеких звезд). На словах метод кажется очень простым, однако он имеет ряд ограничений, а для его эффективного применения нужна очень чувствительная техника.


Даже крупные планеты (на рисунке точка в правой части светила) вызывают незначительные изменения яркости звезды. Изображение с сайта nasa.gov

Поиск экзопланет (особенно небольших) при помощи транзитного метода является нетривиальной задачей уже потому, что изменение яркости свечения звезды при проходе мимо нее планеты минимально. Земля закрывала бы от наблюдателя из далекого космоса всего 0,008 процента света Солнца. Такие незначительные возмущения могут возникать по множеству причин. Например, их может вызывать появление пятен на изучаемой звезде.

"Правильные" колебания, то есть колебания, вызванные прохождением по диску звезды планеты, должны быть периодическими. Поэтому прежде чем приписывать "подмигиванию" экзопланетную природу, астрономам необходимо засечь изменение яркости со сходными характеристиками несколько раз. Для планет земного типа и для похожих на Солнце звезд период обращения составляет около года. То есть, следить за "подмигивающими" звездами придется несколько лет. При этом вероятность пропустить сам момент транзита планеты весьма высока: продолжительность этого события составляет несколько часов.

В дополнение ко всем этим трудностям транзитный метод подходит только для очень ограниченной выборки звезд. Для того чтобы телескоп смог заметить изменение яркости звезды, орбита обращающейся вокруг нее планеты должна быть ориентирована строго определенным образом. Согласно подсчетам, это требование выполняется в среднем для одной звезды из сотни.

Все сразу и без проблем

Разработчики миссии Kepler попытались учесть все эти сложности. Чувствительность его телескопа достаточна для регистрации минимальных изменений яркости. По словам инженеров, Kepler может увидеть пролет мухи мимо фар автомобиля, находящегося на расстоянии нескольких километров. Чтобы не пропустить транзит планеты, Kepler будет наблюдать звездное небо практически непрерывно. Телескоп будет снимать показания каждые полчаса. Так как он находится за пределами земной атмосферы, погодные условия и смены дня и ночи не будут мешать проведению измерений.

Орбита Kepler выбрана таким образом, чтобы в его поле зрения периодически не вторгались Луна и Солнце. Говоря научным языком, поле зрения нового телескопа лежит вне плоскости эклиптики.



В этом участке Млечного Пути телескоп Kepler будет искать экзопланеты земного типа. Изображение Jon Lomberg с сайта nasa.gov. Кликните на картинке, чтобы увеличить изображение.

В своем движении вокруг Солнца Kepler будет следовать за Землей, постепенно удаляясь от нее. Телескоп будет совершать один оборот приблизительно за 372,5 дня. Дополнительным преимуществом такого положения является отсутствие вращающего момента, вызванного гравитационным воздействием Земли (так как форма нашей планеты неидеальна, спутники немного по-разному притягиваются к Земле над различными ее участками). Еще один плюс "независимой" от Земли орбиты – стабильный уровень солнечного излучения. Постоянные изменения из-за тени Земли количества попадающих на аппарат солнечных лучей могли бы привести к помехам в работе приборов.

По сравнению с другими телескопами у Kepler очень широкое поле зрения. Он будет обозревать участок неба, приблизительно соответствующий площади ладони вытянутой руки – его размер составит 105 квадратных градусов. Другие орбитальные телескопы, в том числе знаменитый "Хаббл", лишены такой широты обзора. Они предназначены для изучения как можно более далеких областей космоса, а размер исследуемого участка для них не так уж важен.

Район космоса, в который Kepler будет вглядываться 3,5 года, тоже был выбран не случайно. Телескоп аппарата будет направлен на участок неба, расположенный между созвездиями Лебедя и Лиры. По оценкам астрономов, в этой части неба находится около 4,5 миллиона звезд. Большая часть из них похожи на наше Солнце – это относительно холодные звезды среднего возраста. Зоны обитаемости располагаются на небольшом расстоянии от них, так что Kepler сможет увидеть транзит "подходящих" планет. Потенциально обитаемые планеты молодых звезд-гигантов находятся на таком удалении, что даже очень чувствительные детекторы Kepler не заметят изменения яркости звезды при их проходе по ее диску.

По словам Натали Баталья (Natalie Batalha) из Университета Сан Хосе, которая принимает участие в работе над телескопом, чтобы преодолеть все трудности, возникающие при поиске экзопланет транзитным методом, разработчики миссии воспользовались "грубой научной силой". "Все дело в числах", - добавила она.

Широкое поле обзора, непрерывные наблюдения и огромное количество звезд-кандидатов позволяют обойти такой фактор, как малый процент подходящих светил. Совершенные детекторы Kepler должны зафиксировать самое незначительное "подмигивание", а трехгодичная продолжительность миссии позволит астрономам подтвердить, что его виновницей является именно планета.

Kepler получит первые результаты уже через несколько месяцев. Список новых экзопланет сначала пополнят "горячие Юпитеры", обращающиеся на небольшом расстоянии вокруг своих звезд. Год на таких планетах может длиться всего несколько дней, а значит, ученые смогут быстро удостовериться в том, что звезда периодически меркнет именно из-за них. На достоверное обнаружение планет земного типа потребуется несколько лет.

В зависимости от того, насколько типичны землеподобные планеты (то есть планеты, радиус которых колеблется от половины до двух радиусов Земли) для нашей Вселенной, ученые рассчитывают отыскать их от 50 до нескольких сотен.

О скорости прогресса

Астрономы обнаружили первую планету за пределами Солнечной системы совсем недавно – в 1995 году. Сейчас таких планет известно больше трехсот, а еще через три года мы узнаем, как часто среди экзопланет встречаются планеты земного типа. Наконец-то у ученых и просто любителей порассуждать о том, "есть ли жизнь на Марсе", появятся фактические данные, которые можно использовать при составлении прогнозов. И хотя окончательного ответа на вопрос о нашем одиночестве во Вселенной Kepler не даст, он сможет заметно усилить вес доводов за или против.

Если размер большей части планет во Вселенной приблизительно соответствует размеру Земли, ученые рассчитывают обнаружить около 50 планет земного типа. Если планеты в основном крупнее Земли (радиус примерно в 1,3 раза больше), астрономы надеются увидеть около 185 планет. В том случае, если радиус типичной планеты в 2,2 раза больше радиуса Земли, на звездных картах появятся 640 новых планет земного типа. Все расчеты составлены с условием, что вокруг звезды обращается только одна похожая на Землю планета.

Вид «Хаббла» с борта космического корабля «Атлантис» STS-125

Космический телескоп «Хаббл» (КТХ ; Hubble Space Telescope , HST ; код обсерватории «250») - на орбите вокруг , названная в честь Эдвина Хаббла. Телескоп «Хаббл» - совместный проект НАСА и Европейского космического агентства ; он входит в число Больших обсерваторий НАСА.

Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь - в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7-10 раз больше, чем у аналогичного телескопа, расположенного на Земле.

История

Предыстория, концепции, ранние проекты

Первое упоминание концепции орбитального телескопа встречается в книге Германа Оберта «Ракета в межпланетном пространстве» (Die Rakete zu den Planetenraumen ), изданной в 1923 году.

В 1946 году американский астрофизик Лайман Спитцер опубликовал статью «Астрономические преимущества внеземной обсерватории» (Astronomical advantages of an extra-terrestrial observatory ). В статье отмечены два главных преимущества такого телескопа. Во-первых, его угловое разрешение будет ограничено лишь дифракцией, а не турбулентными потоками в атмосфере; в то время разрешение наземных телескопов было от 0,5 до 1,0 угловой секунды, тогда как теоретический предел разрешения по дифракции для орбитального телескопа с зеркалом 2,5 метра составляет около 0,1 секунды. Во-вторых, космический телескоп мог бы вести наблюдение в инфракрасном и ультрафиолетовом диапазонах, в которых поглощение излучений земной атмосферой весьма значительно.

Спитцер посвятил значительную часть своей научной карьеры продвижению проекта. В 1962 году доклад, опубликованный Национальной академией наук США, рекомендовал включить разработку орбитального телескопа в космическую программу, и в 1965 году Спитцер был назначен главой комитета, в задачу которого входило определение научных задач для крупного космического телескопа.

Космическая астрономия стала развиваться после окончания Второй мировой войны. В 1946 году впервые был получен ультрафиолетовый спектр .Орбитальный телескоп для исследований Солнца был запущен Великобританией в 1962 году в рамках программы «Ариэль», а в 1966 году НАСА запустило в космос первую орбитальную обсерваторию OAO-1. Миссия не увенчалась успехом из-за отказа аккумуляторов через три дня после старта. В 1968 году была запущена OAO-2, которая производила наблюдения ультрафиолетового излучения и вплоть до 1972 года, значительно превысив расчётный срок эксплуатации в 1 год.

Миссии OAO послужили наглядной демонстрацией роли, которую могут играть орбитальные телескопы, и в 1968 году НАСА утвердило план строительства телескопа-рефлектора с зеркалом диаметром 3 м. Проект получил условное название LST (Large Space Telescope ). Запуск планировался на 1972 год. Программа подчёркивала необходимость регулярных пилотируемых экспедиций для обслуживания телескопа с целью обеспечения продолжительной работы дорогостоящего прибора. Параллельно развивавшаяся программа «Спейс шаттл» давала надежды на получение соответствующих возможностей.

Борьба за финансирование проекта

Благодаря успеху программы ОАО в астрономическом сообществе сложился консенсус о том, что строительство крупного орбитального телескопа должно стать приоритетной задачей. В 1970 году НАСА учредило два комитета, один для изучения и планирования технических аспектов, задачей второго была разработка программы научных исследований. Следующим серьёзным препятствием было финансирование проекта, затраты на который должны были превзойти стоимость любого наземного телескопа. Конгресс США поставил под сомнение многие статьи предложенной сметы и существенно урезал ассигнования, первоначально предполагавшие масштабные исследования инструментов и конструкции обсерватории. В 1974 году, в рамках программы сокращений расходов бюджета, инициированной президентом Фордом, Конгресс полностью отменил финансирование проекта.

В ответ на это астрономами была развёрнута широкая кампания по лоббированию. Многие учёные-астрономы лично встретились с сенаторами и конгрессменами, было также проведено несколько крупных рассылок писем в поддержку проекта. Национальная Академия Наук опубликовала доклад, в котором подчёркивалась важность создания большого орбитального телескопа, и в результате сенат согласился выделить половину средств из бюджета, первоначально утверждённого Конгрессом.

Финансовые проблемы привели к сокращениям, главным из которых было решение уменьшить диаметр зеркала с 3 до 2,4 метра, для снижения затрат и получения более компактной конструкции. Также был отменён проект телескопа с полутораметровым зеркалом, который предполагалось запустить с целью тестирования и отработки систем, и принято решение о кооперации с Европейским космическим агентством. ЕКА согласилось участвовать в финансировании, а также предоставить ряд инструментов и для обсерватории, взамен за европейскими астрономами резервировалось не менее 15 % времени наблюдений. В 1978 году Конгресс утвердил финансирование в размере 36 млн долл., и сразу после этого начались полномасштабные работы по проектированию. Дата запуска планировалась на 1983 год. В начале 1980-х телескоп получил имя Эдвина Хаббла.

Организация проектирования и строительства

Работа над созданием космического телескопа была поделена между многими компаниями и учреждениями. Космический центр Маршалла отвечал за разработку, проектирование и строительство телескопа, Центр космических полётов Годдарда занимался общим руководством разработкой научных приборов и был выбран в качестве наземного центра управления. Центр Маршалла заключил контракт с компанией «Перкин-Элмер» на проектирование и изготовление оптической системы телескопа (Optical Telescope Assembly - OTA ) и датчиков точного наведения. Корпорация «Локхид» получила контракт на строительство для телескопа.

Изготовление оптической системы

Полировка главного зеркала телескопа, лаборатория компании «Перкин-Элмер», май 1979 года

Зеркало и оптическая система в целом были наиболее важными частями конструкции телескопа, и к ним предъявлялись особо жёсткие требования. Обычно зеркала телескопов изготавливаются с допуском примерно в одну десятую длины волны видимого света, но, поскольку космический телескоп предназначался для наблюдений в диапазоне от ультрафиолетового до почти инфракрасного, а разрешающая способность должна была быть в десять раз выше, чем у наземных приборов, допуск для изготовления его главного зеркала был установлен в 1/20 длины волны видимого света, или примерно 30 нм.

Компания «Перкин-Элмер» намеревалась использовать новые станки с числовым программным управлением для изготовления зеркала заданной формы. Компания «Кодак» получила контракт на изготовление запасного зеркала с использованием традиционных методов полировки, на случай непредвиденных проблем с неопробированными технологиями (зеркало, изготовленное компанией «Кодак», в настоящее время находится в экспозиции музея Смитсоновского института). Работы над основным зеркалом начались в 1979 году, для изготовления использовалось стекло со сверхнизким коэффициентом теплового расширения. Для уменьшения веса зеркало состояло из двух поверхностей - нижней и верхней, соединённых решётчатой конструкцией сотовой структуры.

Резервное зеркало телескопа, Смитсоновский музей авиации и космонавтики, Вашингтон

Работы по полировке зеркала продолжались до мая 1981 года, при этом были сорваны первоначальные сроки и значительно превышен бюджет. В отчётах НАСА того периода выражаются сомнения в компетентности руководства компании «Перкин-Элмер» и её способности успешно завершить проект такой важности и сложности. В целях экономии средств НАСА отменило заказ на резервное зеркало и перенесло дату запуска на октябрь 1984 года. Окончательно работы завершились к концу 1981 года, после нанесения отражающего покрытия из алюминия толщиной 75 нм и защитного покрытия из фторида магния толщиной в 25 нм.

Несмотря на это, сомнения в компетентности «Перкин-Элмер» оставались, поскольку сроки окончания работ над остальными компонентами оптической системы постоянно отодвигались, а бюджет проекта рос. Графики работ, предоставляемые компанией, НАСА охарактеризовало как «неопределённые и изменяющиеся ежедневно» и отложило запуск телескопа до апреля 1985 года. Тем не менее, сроки продолжали срываться, задержка росла в среднем на один месяц каждый квартал, а на завершающем этапе росла на один день ежедневно. НАСА было вынуждено ещё дважды перенести старт, сначала на март, а затем на сентябрь 1986 года. К тому времени общий бюджет проекта вырос до 1,175 млрд долл.

Космический аппарат

Начальные этапы работ над космическим аппаратом, 1980

Другой сложной инженерной проблемой было создание аппарата-носителя для телескопа и остальных приборов. Основными требованиями были защита оборудования от постоянных перепадов температур при нагреве от прямого солнечного освещения и охлаждения в тени Земли и особо точное ориентирование телескопа. Телескоп смонтирован внутри лёгкой алюминиевой капсулы, которая покрыта многослойной термоизоляцией, обеспечивающей стабильную температуру. Жёсткость капсулы и крепление приборов обеспечивает внутренняя пространственная рама из углепластика.

Хотя работы по созданию космического аппарата проходили более успешно, чем изготовление оптической системы, «Локхид» также допустила некоторое отставание от графика и превышение бюджета. К маю 1985 года перерасход средств составил около 30 % от первоначального объёма, а отставание от плана - 3 месяца. В докладе, подготовленном Космическим центром Маршалла, отмечалось, что при проведении работ компания не проявляет инициативу, предпочитая полагаться на указания НАСА.

Координация исследований и управление полётом

В 1983 году, после некоторого противоборства между НАСА и научным сообществом был учреждён Научный институт космического телескопа. Институт управляется Ассоциацией университетов по астрономическим исследованиям (Association of Universities for Research in Astronomy ) (AURA) и располагается в кампусе университета Джонса Хопкинса в Балтиморе, штат Мэриленд. Университет Хопкинса - один из 32 американских университетов и иностранных организаций, входящих в ассоциацию. Научный институт космического телескопа отвечает за организацию научных работ и обеспечение доступа астрономов к полученным данным; эти функции НАСА хотело оставить под своим контролем, но учёные предпочли передать их академическим учреждениям.

Европейский координационный центр космического телескопа был основан в 1984 году в городе Гархинг, Германия для предоставления аналогичных возможностей европейским астрономам.

Управление полётом было возложено на Центр космических полётов Годдарда, который находится в городе Гринбелт, Мэриленд, в 48 километрах от Научного института космического телескопа. За функционированием телескопа ведётся круглосуточное посменное наблюдение четырьмя группами специалистов. Техническое сопровождение осуществляется НАСА и компаниями-контакторами через Центр Годдарда.

Запуск и начало работы

Старт шаттла «Дискавери» с телескопом «Хаббл» на борту

Первоначально запуск телескопа на орбиту планировался на октябрь 1986 года, но 28 января приостановила программу «Спейс шаттл» на несколько лет, и запуск пришлось отложить.

Всё это время телескоп хранился в помещении с искусственно очищенной атмосферой, его бортовые системы были частично включены. Расходы на хранение составляли около 6 млн долл. в месяц, что ещё больше увеличило стоимость проекта.

Вынужденная задержка позволила произвести ряд усовершенствований: солнечные батареи были заменены на более эффективные, был модернизирован бортовой вычислительный комплекс и системы связи, а также изменена конструкция кормового защитного кожуха с целью облегчить обслуживание телескопа на орбите.Кроме того, программное обеспечение для управления телескопом было не готово в 1986 году и фактически было окончательно написано только к моменту запуска в 1990 году.

После возобновления полётов шаттлов в 1988 году запуск был окончательно назначен на 1990 год. Перед запуском накопившаяся на зеркале пыль была удалена при помощи сжатого азота, а все системы прошли тщательное тестирование.

Понравилась статья? Поделитесь с друзьями!