История появления первого термометра. Термометры. История возникновения (историческая справка, дополнительный материал к уроку). Появление шкалы на термометрах

θέρμη - тепло; μετρέω - измеряю) - прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:
  • жидкостные;
  • механические;
  • электронные;
  • оптические;
  • газовые;
  • инфракрасные.

Энциклопедичный YouTube

    1 / 2

    ✪ Что Делать, если Разбили Термометр? - Ранок - Інтер

    ✪ Печатная Плата на ЧПУ SMD Цифровой ТЕРМОМЕТР на DS18B20

Субтитры

История изобретения

Изобретателем термометра принято считать Галилея : в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани , засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского , у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Изобретение термометра также приписывают лорду Бэкону , Роберт Фладду , Санкториусу , Скарпи, Корнелию Дреббелю (Cornelius Drebbel ), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II . Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

Электронные термометры

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C - 100Ω) PT1000 (сопротивление при 0 °C - 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 - +850 °C.

R T = R 0 [ 1 + A T + B T 2 + C T 3 (T − 100) ] (− 200 ∘ C < T < 0 ∘ C) , {\displaystyle R_{T}=R_{0}\left\;(-200\;{}^{\circ }\mathrm {C} R T = R 0 [ 1 + A T + B T 2 ] (0 ∘ C ≤ T < 850 ∘ C) . {\displaystyle R_{T}=R_{0}\left\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C}).}

Отсюда, R T {\displaystyle R_{T}} сопротивление при T °C, R 0 {\displaystyle R_{0}} сопротивление при 0 °C, и константы (для платинового сопротивления) -

A = 3.9083 × 10 − 3 ∘ C − 1 {\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}} B = − 5.775 × 10 − 7 ∘ C − 2 {\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}} C = − 4.183 × 10 − 12 ∘ C − 4 . {\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости , спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Современный человек давно привык к тому, что его окружают полезные и «умные» устройства. Но не все догадываются, каким долгим, а нередко и трудным был путь этих вещей через толщу столетий. Взять, к примеру, знакомый всем медицинский термометр, или в просторечии градусник. Кажется, нет ничего более простого и повседневного, - но на самом деле он переступил порог нашего дома не так у не давно.

Первые прототипы

Первый термометр - точнее, воздушный термоскоп, - был совершенно не похож на современный. Он был создан в 1597 году одним из титанов эпохи Возрождения, итальянским учёным Галилео Галилеем. Впрочем, он не является непосредственным автором разработки: Галилей воплотил на практике идеи Герона Александрийского, у которого уже описано подобное приспособление, - правда, не для измерения степеней тепла, а для поднятия воды при помощи нагревания.

К стеклянному шару размером с куриное яйцо учёный припаял тонкую стеклянную трубочку. Согревая руками шар (а, следовательно, и находящийся в нём воздух) и переворачивая его, он погружал свободный конец трубки в сосуд с подкрашенной водой или вином. Как только шар остывал, объём содержащегося в нем воздуха уменьшался, и вода, занимая его место, поднималась по трубке. В отличие от современного термометра в приборе Галилея расширялся воздух, а не ртуть. Кроме того, это был действительно лишь прототип без конкретной шкалы измерения.

Почти одновременно с Галилеем, еще не зная о его изобретении, профессор Падуанского университета С. Санторио, - врач, анатом и физиолог, - создал свой прибор, с помощью которого измерял температуру человеческого тела. В те времена полагали, что выдыхаемый человеком воздух исходит непосредственно из сердца и несет «жизненную теплоту». Её-то и пытался измерить Санторио, чтобы постичь одну из главных тайн жизни организма.

Его прибор был достаточно громоздким и тоже состоял из шара, но уже заполненного жидкостью, а также извилистой бочки с нанесёнными на неё делениями. Человек дышал в термометр, или брал его в рот, или согревал руками (в зависимости от цели эксперимента). В итоге Санторио стал первым врачом, который узнал, что наше тело имеет постоянную нормальную температуру, и оценил отклонение её от нормы как болезненное состояние.

Появление классического термометра

В 1657 году термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Но поскольку спирт при высоких температурах быстро закипает, он годился только для измерения холода. И градусник стали «заряжать» ртутью.

Единой шкалы градусов, так хорошо знакомой нам сегодня, в те времена ещё не было. Свои варианты измерения предлагали знаменитые Фаренгейт и Реомюр, однако решающее слово (и впоследствии наиболее масштабное применение) оказалось за 100-градусной шкалой, разработанной шведским физиком и астрономом Андерсеном Цельсием. Правда, поначалу эту система работала «вверх тормашками»: 0 градусов соответствовал температуре кипения воды, а 100 градусов - точке таяния льда. Впоследствии шкала была перевёрнута: по одним сведениям, самим изобретателем, по другим – преемник Цельсия М.Штремер, а кто считает, что её отредактировал Карл Линней в 1745 году. Именно в таком виде эта шкала прижилась и дошла до наших дней.

Кроме того, при дворе Фердинанда II, императора Священной Римской империи, который слыл не только покровителем искусств, но и был автором ряда физических приборов, создавались забавные термометры, похожие на маленьких лягушат. Они были выполнены настолько тонко и искусно, что вызывали восхищение современников. Эти термометры предназначались для измерения температуры тела человека и легко прикреплялись к коже пластырем. Полость «лягушат» частично заполнялась жидкостью, на поверхности которой плавали цветные шарики различной плотности. Когда жидкость согревалась, объём ее несколько увеличивался, а плотность соответственно уменьшалась. И тогда некоторые шарики погружались на дно прибора.

Ртутный градусник в наше время

В медицинской практике термометрия начала применяться намного позже, чем в технике. Еще в 1861 году немецкий врач Карл Герхард считал «измерение температуры слишком сложной процедурой, чтобы возможно было введение его в практику и частое применение». Так или иначе, его прогноз никак не помешал занять ртутному градуснику почётное место в арсенале каждого врача-терапевта и практически любой домашней аптечке.

Ртутный термометр представляет собой обтекаемую стеклянную трубку с капилляром, содержащим 2 грамма ртути. Эти градусники работают за счёт того, что в ходе нагрева и охлаждения ртуть равномерно расширяется и сокращается. Благодаря этим свойствам её также применяют в барометрах и других исследовательских приборах. Ртутные градусники обладают самой высокой точностью определения температуры (погрешность не более 0,1 градуса).

Если правильно соблюдать правила пользования и хранения, то такой градусник прослужит вам многие годы. Кроме того, его можно недорого купить в любой аптеке – кроме стран Евросоюза, которые не так давно попали под запрет из-за высокой токсичности жидкого металла. Из минусов ртутных термометров, помимо их ядовитой начинки, следует отметить и длительное время измерения температуры -около 10 минут для наиболее точного результата.

Градусник обязательно должен быть всегда под рукой, поскольку повышенная температура тела – это первый признак воспалительного процесса в организме. Однако многие современные люди неправильно используют информацию, которую им сообщает термометр. Важно понимать, что повышение температуры – НЕ причина воспаления, а проявление защитных функций иммунитета. Поэтому температуру ниже 38 градусов не нужно сбивать при помощи медикаментов – это довольно глупый способ помешать выздоровлению. А вот температура ниже нормы, наоборот, говорит о том, что организму не хватает сил для самостоятельной борьбы.

Сегодня практически невозможно представить себе жизнь без термометра. Конечно, о температуре на улице можно узнать из сводки погоды. Но как же определить уровень тепла в комнате, духовке, сушильной камере или теплице? Тут никак не обойтись без термометра.

Существует несколько их видов:

  • жидкостные;
  • механические;
  • газовые;
  • электрические;
  • оптические.

Жидкостные

Принцип действия такого прибора основан на эффекте расширения или сжатии жидкости, которая заполняет колбу и изменяет свой объем при колебании собственной температуры. Обычно, в него заливают ртуть или спирт, которые тонко реагируют на минимальное изменение тепла в окружающей среде.

В медицине обычно используются ртутные градусники, а вот в метеорологии их заполняют спиртом, поскольку ртутный столбик может застывать уже при -38 градусах.


Механические

Принцип работы прибора данного типа тоже основан на расширении. Но с его помощью определяется температура в зависимости от расширения биметаллической ленты или металлической спирали.

Такие характеризуются высокой точностью, они надежны и просты в эксплуатации.

Как отдельную, самостоятельную модель их, правда, не используют, обычно они применяются в автоматизированных системах.

Газовые

Газовый тип температурного измерителя работает по тому же принципу, что и жидкостное устройство. В качестве рабочего вещества в нем используют какой-либо инертный газ.

Преимущество этого прибора заключается в том, что он может измерять температуру, приближающуюся к абсолютному нулю, и диапазон его измерений колеблется от -271 до +1000 градусов. Это достаточно сложное устройство, которое редко участвует в лабораторных измерениях.

Электрические

Работа такого измерительного прибора связана с зависимостью сопротивления используемого проводника от температуры. Известно, что сопротивление любых металлов линейно зависит от уровня их тепла. Более точные измерения можно получить, если заменить металлические проводники полупроводниками. Однако полупроводники в таких приборах практически не используют, поскольку зависимость между характеристиками полупроводника и уровня тепла нельзя выразить линейно и практически невозможно проградуировать приборную шкалу.

В роли проводника обычно выступает медь, показывающая изменения температур от -50 до +180 градусов. Если взять другой рабочий металл, например, платину, то температурный диапазон ее значительно расширится и составит от -200 до +750 градусов. Такие электрические тепловые датчики используют в лабораториях, на экспериментальных стендах или на производстве.

Оптические

Оптические приборы или пирометры позволяют узнать температуру по уровню светимости тела, анализу его спектра и некоторым другим параметрам. Это бесконтактный прибор, способный измерять, причем с точностью до нескольких градусов, уровень тепла в широчайшем диапазоне – от 100 до 3000 градусов. Чаще всего на практике мы встречаемся с инфракрасными бытовыми термометрами. Такие градусники очень удобны, поскольку позволяют безопасно, быстро и точно определять температуру тела человека.

Существуют и другие, более сложные температурные измерители, например, волоконно-оптические или термоэлектрические. Это очень чувствительные приборы, дающие точнейшие результаты измерения практически без ошибки.

Полезные советы

Ртутный медицинский термометр

Электронные термометры

Медицинский электронный термометр

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Домашняя метеостанция

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C - 100Ω) PT1000 (сопротивление при 0 °C - 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 - +850 °C.

R T = R 0 [ 1 + A T + B T 2 + C T 3 (T − 100) ] (− 200 ∘ C < T < 0 ∘ C) , {\displaystyle R_{T}=R_{0}\left\;(-200\;{}^{\circ }\mathrm {C} R T = R 0 [ 1 + A T + B T 2 ] (0 ∘ C ≤ T < 850 ∘ C) . {\displaystyle R_{T}=R_{0}\left\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C}).}

Отсюда, R T {\displaystyle R_{T}} сопротивление при T °C, R 0 {\displaystyle R_{0}} сопротивление при 0 °C, и константы (для платинового сопротивления) -

A = 3.9083 × 10 − 3 ∘ C − 1 {\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}} B = − 5.775 × 10 − 7 ∘ C − 2 {\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}} C = − 4.183 × 10 − 12 ∘ C − 4 . {\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости , спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

История изобретения термометра благодаря переводам наследия древних ученых сохранилась хорошо.

Так описано, что греческий ученый и врач Гален, сделал первую попытку измерения температуры в 170 году н.э. Он документально описал стандартную температуру кипящей воды и льда.

Измерители нагретости

Концепция измерения температуры является достаточно новой. Термоскоп – по существу, измеритель нагретости без шкалы был предшественником современного термометра. Были несколько изобретателей, работающих на термоскопе в 1593 году, но наиболее известным является Галилео Галилей, итальянский изобретатель, который также улучшил (но не изобрел) термоскоп.

Термоскоп может показать различия в нагретости, что позволяет наблюдателям знать, если что-то становилось теплее или холоднее. Тем не менее, термоскоп не может обеспечить точную температуру в градусах. В 1612 году итальянский изобретатель Санторио добавил свою числовую шкалу на термоскоп и она была использована, чтобы измерять температуру человека. Но по-прежнему не хватало стандартизированной шкалы и точности.

Изобретение термометра принадлежит немецкому физику Габриелю Фаренгейту который совместно с датским астрономом Олаф Кристенсен Рёмером разработал измеритель на основе и с использованием спирта.

В 1724 году они ввели шкалу стандартной температуры, которая носит его имя Фаренгейта, масштаба который был использован для записи изменений нагретости в точной форме. Его шкала разделена на 180 градусов между точками замерзания и кипения воды. 32° F замерзания воды и 212 ° F кипения воды, 0° F была основана на нагретости равной смеси воды, льда и соли. Также за основу этой знаковой системы взята температура человеческого тела. Первоначально, нормальная нагретость человеческого тело была 100° F, но с тех пор была скорректирована до 98,6 ° F. Равная смесь воды, льда и хлорида аммония использована для установки в 0° F.

Фаренгейт демонстрировал термометр на спиртовой основе в 1709 году до открытия ртутного аналога, который оказался более точным.

В 1714 Фаренгейт разработал первый современный термометр – ртутный термометр с более точными измерениями. Известно, что ртуть расширяется или сжимается при повышении физической величины нагретости или падает. Это можно считать первым современным ртутным термометром со стандартизированной шкалой.

История изобретения термометра отмечает, что Габриель Фаренгейт немецкий физик изобрел спиртовой термометр в 1709 году и ртутный термометр в 1714 году.

Виды температурных шкал

В современном мире находят применение определенные виды температурных шкал :

1. Шкала Фаренгейта является одной из трех основных температурных знаковых систем, используемых сегодня с двумя другими Цельсия и Кельвина. Фаренгейт это стандарт, используемый для измерения температуры в Соединенных Штатах, но большая часть остального мира использует Цельсия.

2. Вскоре после открытия Фаренгейта шведский астроном Андерс Цельсий озвучил свою шкалу, которая упоминается как Цельсия. Она делится на 100 градусов, отделяющих точку кипения и замерзания. Оригинальный масштаб установленный Цельсием 0 в качестве точки кипения воды и 100 в качестве точки замерзания, был изменен вскоре после изобретения шкалы и стал: 0° C – замерзания, 100° C – точка кипения.

Термин Цельсия был принят в 1948 году международной конференцией по вопросам мер и весов и масштаб является предпочтительным как датчик температуры для научных приложений, а также в большинстве стран мира кроме Соединенных Штатов.

3. Следующую шкалу изобрел Лорд Кельвин из Шотландии с его датчиком в 1848 году, известная сейчас как шкала Кельвина. Она основывался на идее абсолютной теоретической нагретости, при которой все вещества не имеют тепловой энергии. Там нет отрицательных чисел по шкале Кельвина, 0 K самая низкая температура возможная в природе.

Абсолютный ноль по Кельвину означает минус 273,15 ° С и минус 459,67 F. Шкала Кельвина широко используется в научных приложениях. Единицы по шкале Кельвина имеют тот же размер, как и у шкалы Цельсия, за исключением того, что шкала Кельвина устанавливает самую .

Коэффициенты пересчета видов температур

Фаренгейта в градусы Цельсия: вычтите 32, а затем умножить на 5, а затем разделить на 9;

Цельсия в градусы Фаренгейта: умножьте на 9, делим на 5, затем добавить 32;

Фаренгейта в Кельвина: вычтите 32, умножить на 5, разделить на 9, а затем добавить 273,15;

Кельвина в градусы Фаренгейта: вычтите 273,15, умножить на 1,8, а затем добавить 32;

Кельвина в градусы Цельсия: добавить 273;

Цельсия в Кельвина: вычтите 273.

Термометры используют материалы, которые изменяются в некотором роде, когда они нагреваются или охлаждаются. Самыми распространенные ртутные или спиртовые, где жидкость расширяется, когда нагревается и сжимается при охлаждении, поэтому длина столба жидкости длиннее или короче в зависимости от нагретости. Современные термометры калиброванные по виду температур как по Фаренгейту (используются в США), по Цельсию (во всем мире) и Кельвина (используется в основном учеными).

Понравилась статья? Поделитесь с друзьями!